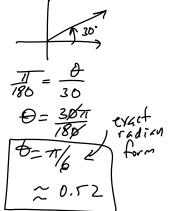

Unit 4: Trigonometry & The Unit Circle

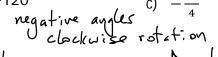
4.1 Angles & Angle Measure

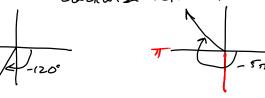
Alternative to measuring angles in degrees ⇒ *radian measure*

Consider a circle with radius r.

Radian: One radian (1 rad or 1) is he measure of the central angle subtended in a circle by an arc equal in length to the radius


How many radians on one full revolution? (360°)


ie. How many arcs of length r will fit around the circle?


ny arcs of length r will fit around the circle?

Circumference $C = 2\pi v$ $\frac{190^{\circ} \pi/2}{20^{\circ} 3\pi/2}$ or or $\frac{360^{\circ} = 2\pi \text{ rads}}{180^{\circ} = \pi \text{ rads}}$ when angle in standard position of $\frac{1}{2}$

Ex. Draw each angle in standard position. Change angles in degrees to radians and angles in radians to degrees. Express answers in both exact and approximate measures to the nearest hundredth.

$$\frac{\pi}{180} = \frac{6}{120}$$

$$\frac{\pi}{120} = -129\pi$$

$$\frac{188}{6} = \frac{-2\pi}{3} \approx -2.09$$

$$\frac{\pi}{190} = \frac{2.57}{9}$$

$$0 = 180(2.57)$$

Coterminal Angles:

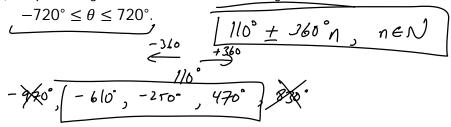
1470 Angles in standard position with the same terminal arm

Ex. Determine the quadrant in which the terminal arm of each angle lies and find one positive and one negative coterminal angle.

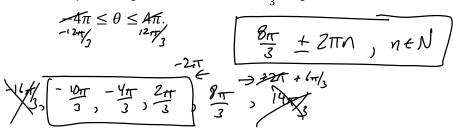
b)
$$-430^{\circ}$$
 +360

c)
$$\frac{8\pi}{3}$$
 - $2\pi \frac{6\pi}{3}$

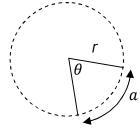
c)
$$\frac{8\pi}{3}$$
 - $2\pi \frac{6\pi}{3}$


b)
$$-430^{\circ} +360^{\circ}$$
 $Q\overline{V}$ c) $\frac{8\pi}{3}$ $-2\pi \frac{6\pi}{3}$ -70° $2\pi \sqrt{3} - 6\pi \sqrt{3} = -4\pi \sqrt{3}$

Coterminal Angles in General Form:


Coternisals of a given:
$$\frac{0}{2} \pm 360$$
 n OR $\frac{0}{2} \pm 2\pi n$

Ex.


a) Express angles coterminal with 110° in general form. Find all coterminal angles such that

b) Express angles coterminal with $\frac{8\pi}{3}$ in general form. Find all coterminal angles such that

How can we determine the length of an arc in a circle?

Use a proportion comparing the sector angle θ to a full revolution and arc length to the full circumference (c)

$$\frac{a}{c} = \frac{\theta}{1 \text{ revolution}}$$

$$\frac{a}{2\pi r} = \frac{\theta}{360}$$

$$\frac{a}{2\pi r} = \frac{\theta}{2\pi r}$$

$$a = \frac{2\pi r \theta}{360}$$

$$a = \frac{2\pi r \theta}{360}$$

$$a = \frac{\pi r \theta}{360}$$

$$a = r \theta$$

$$a = r \theta$$

$$a = r \theta$$

Ex. Provide the missing information, to the nearest tenth, in each case below

a)
$$r = 8.7 \text{ cm}$$
, $\theta = 75^{\circ}$, b) $a = 4.7 \text{ mm}$, $\theta = 1.8$, c) $r = 5 \text{ m}$, $a = 13 \text{ m}$, $a = ?$

$$a = ?$$

c)
$$r = 5 \underline{m}, a = 13 \underline{m},$$
 $\theta = ?$

$$\alpha = c \theta$$

$$\Theta = \frac{\alpha}{\sqrt{13}}$$

$$= \frac{13}{\sqrt{13}}$$

$$\theta = 2.6$$

RADS!

Practice: pg. 175/# 2, 3, 5 – 9, 11 – 14, 16 – 18, 26