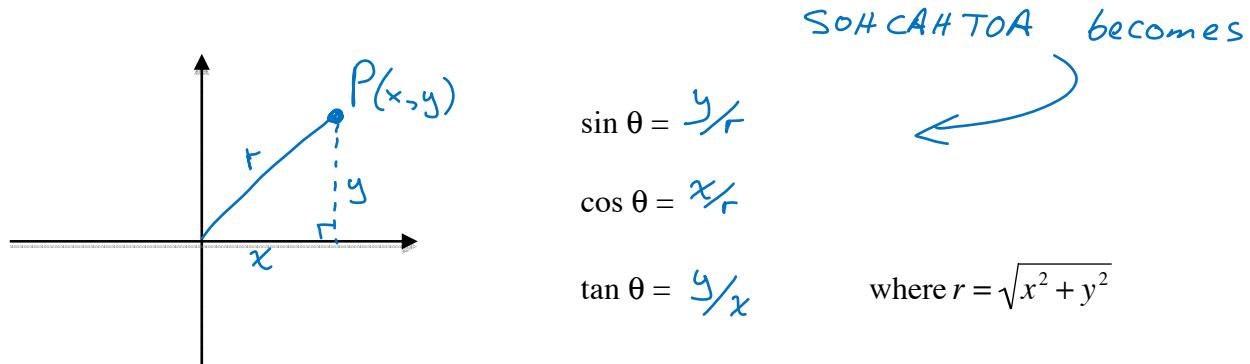
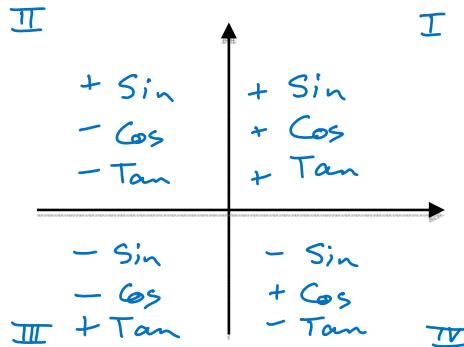


2. Trig Ratios of Any Angle

Yesterday we drew the angles in *Standard Position*. Now if we consider any point $P(x, y)$ on the terminal arm, we can define the three primary trig ratios as:



→ r is always defined to be positive, but x and y may be negative depending upon which quadrant terminal arm is in. Therefore, the \sin , \cos and \tan ratios may also be positive or negative.



To remember the quadrants in which the ratios are pos, All Soup Turns Cold
 A S T C

Example 1: p. 91 The point $P(-8, 15)$ lies on the terminal arm of angle Θ , in standard position. Determine the exact trig ratios for $\sin\Theta$, $\cos\Theta$, and $\tan\Theta$.

$$x = -8$$

$$y = 15$$

$$\begin{aligned} r &= \sqrt{225 + 64} \\ &= \sqrt{289} \\ &= 17 \end{aligned}$$

$$\sin\Theta = \frac{y}{r} = \frac{15}{17}$$

$$\cos\Theta = \frac{x}{r} = -\frac{8}{17}$$

$$\tan\Theta = \frac{y}{x} = \frac{15}{-8}$$

Example 2: p. 92 - Suppose θ is an angle in standard position with terminal arm in quadrant III, and $\cos\theta = -\frac{3}{4}$. What are the exact values of $\sin\theta$ and $\tan\theta$?

$$\cos\theta = \frac{x}{r} = \frac{-3}{4}$$

$$\sin\theta = \frac{y}{r} = -\frac{\sqrt{7}}{4}$$

$$\tan\theta = \frac{y}{x} = \frac{\sqrt{7}}{3}$$

$$x = -3$$

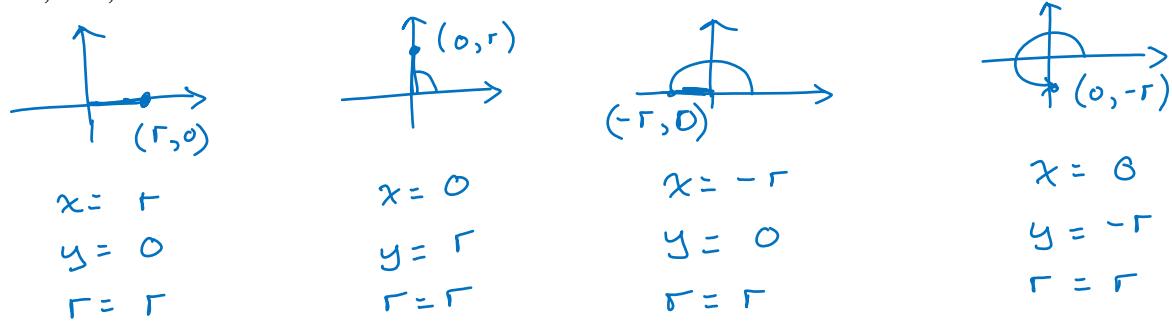
$$y = \sqrt{7} \text{ or } -\sqrt{7} ?$$

$$r = 4$$

What about values that aren't positive or negative? What if $\cos\theta = 0$?

A quadrantal angle is an angle in standard position whose terminal arm lies on the x axis or the y axis.

Example 3: p. 93 - Determine the values of $\sin\theta$, $\cos\theta$, and $\tan\theta$ for quadrantal angles of 0° , 90° , 180° and 270° .



	0°	90°	180°	270°
$\frac{y}{r}$	0	1	0	-1
$\frac{x}{r}$	1	0	-1	0
$\frac{y}{x}$	0	undefined	0	undefined

Finding an angle can get more complicated when you don't know the quadrant in which it lies. (there may be two possibilities)

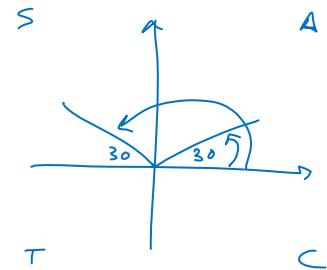
Draw a diagram!

Example 4: Solve for Θ to the nearest degree where $0^\circ \leq \Theta < 360^\circ$ between 0° & 360°

a) $\sin \theta = 0.5$

$\hookrightarrow 2^{\text{nd}} \sin \rightarrow 30^\circ$

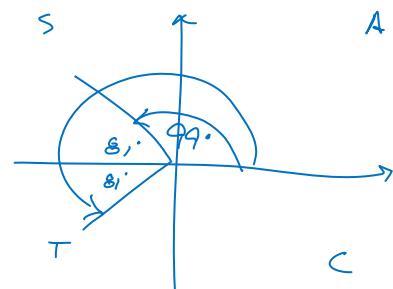
$$\Theta = \underline{\underline{30^\circ}} \text{ or } \underline{\underline{150^\circ}}$$



b) $\cos \theta = -0.156$

$\hookrightarrow 2^{\text{nd}} \cos \rightarrow 99^\circ$

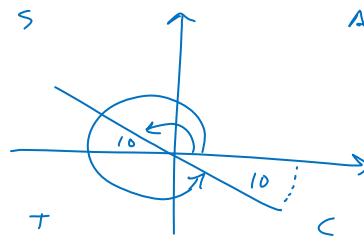
$$\Theta = \underline{\underline{99^\circ}} \text{ or } \underline{\underline{261^\circ}}$$



c) $\tan \theta = -0.179$

$\hookrightarrow 2^{\text{nd}} \tan \rightarrow -10$

$$\Theta = \underline{\underline{170^\circ}} \text{ or } \underline{\underline{350^\circ}}$$



d) $\cos \theta = -1.125$

impossible for Sin & Cos ratios!

Assignment: p. 96 # 3, 4, 5(ac), 7, 8(ac), 12