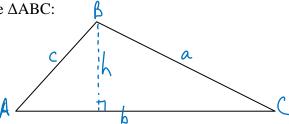
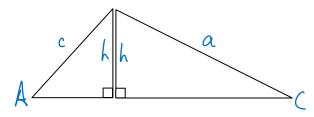
2.2 The Sine Law

Start with any triangle $\triangle ABC$:



If we drop a perpendicular and create two separate triangles:



Using the sine ratios: $Sin A = \frac{h}{c}$ & $Sin C = \frac{h}{a}$

 \dots since h is the same in both triangles, therefore:

$$\frac{c \sin A = a \sin C}{ac} \implies \frac{\sin A}{a} = \frac{\sin C}{c}$$

We could have placed angles A, B and C in any position, so we could have derived:

$$\frac{SinB}{b} = \frac{SinC}{c} \qquad or \qquad \frac{SinA}{a} = \frac{SinB}{b}$$

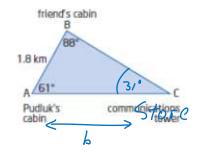
The Sine Law (for any $\triangle ABC$)

where \underline{a} is opposite $\angle A$

 $\underline{}$ is opposite $\underline{\angle B}$

c is opposite $\angle C$

Example 1: p.102 - find and unknown side length Determine the distance from Pudluk's cabin to the store, to the nearest tenth of a kilometer.



$$\frac{\sin C}{c} = \frac{\sinh B}{b}$$

$$\frac{\sin 31^{\circ}}{1.8} = \frac{\sin 88^{\circ}}{b}$$

37

$$b = \frac{1.8 \, \text{Sin.} 88^{\circ}}{\text{Sin.} 31^{\circ}} = 3.5 \, \text{km}$$

Example 2: find angle Θ :

Need to know opposite Side & angle

$$A = \frac{\sin A}{a} = \frac{\sin C}{c}$$

$$\frac{\sin 25^{\circ}}{17} = \frac{\sin C}{27}$$

17

Assignment: p. 108 # 1-3, 5, 10, 15,