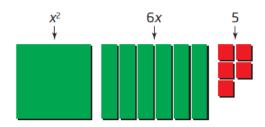
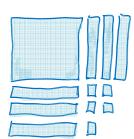

3.3 Completing the Square

Remember Algebra Tiles? We can make a perfect square using x^2 's, x's and 1's:

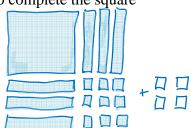
e.g.
$$(x+2)^2$$
 looks like



If we don't have all the necessary pieces, we may have to add on zero pairs


in order to <u>Complete the square</u>

Example 1: p. 184

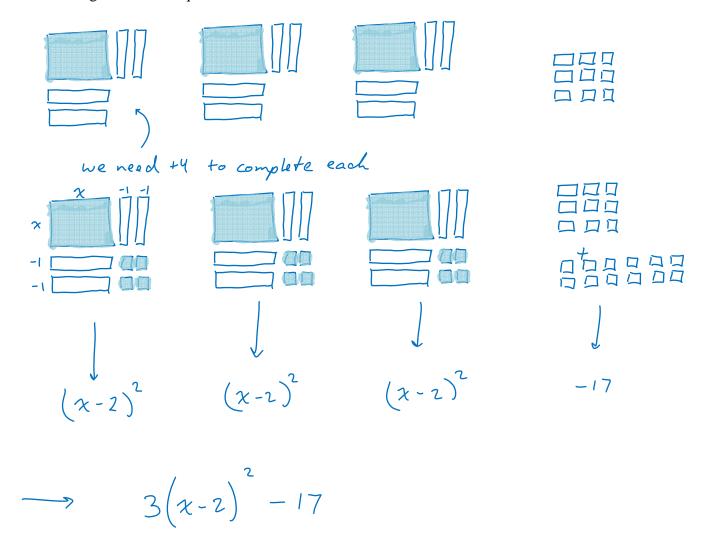

a) complete the square for $x^2 + 6x + 5$ and rewrite as

reorganize as:

add on $\frac{1}{2}$ $\frac{1}{2}$ to complete the square

final result: $(\chi + 3)^2 - 4$

Notice that this is the same as what we started with:


that this is the same as what we started with:

i.l.
$$(x+3)^2 - 4$$

$$(x+3)(x+3)^2 - 4 \longrightarrow x^2 + 6x + 9 - 4 \longrightarrow x^2 + 6x + 5$$

PreCalculus 11

b) complete the square and rewrite $3x^2 - 12x - 9$ reorganize into 3 squares:

We can also accomplish this through algebra. To start with, consider a perfect square:

What if the last number is missing?

e.g.
$$x^2 + 10x + 25$$
 \longrightarrow $(x + 5)^2$

$$x^2 - 26x + 169 \longrightarrow (x - 13)^2$$

What about $2x^2 + 24x + \underline{72} \longrightarrow 2(x+6)^2$ $2(x^2 + 12 + 36)$

To complete the square, factor out the a from first 2 terms,

then add on (2nd) 2 -> and subtract off too!

Example 2: p. 184 - rewrite in vertex form by completing the square:

a)
$$f(x) = x^{2} + 6x + 5$$

$$= \chi^{2} + 6x + 9 - 9 + 5$$

$$= (\chi_{1} + 3)^{2} - 9 + 5$$

$$f(x) = (\chi_{1} + 3)^{2} - 4$$

b)
$$f(x) = 3x^2 - 12x - 9$$
.
 $= 3(x^2 - 4x + 4 \stackrel{!}{=} 4) - 9$
 $= 3(x - 2)^2 - 12^{k'} - 9$
 $f(x) = 3(x - 2)^2 - 21$

c)
$$f(x) = -5x^2 - 70x$$

$$\int_{-7}^{7} (x) = -5(x^2 + 14x)$$

$$= -5(x^2 + 14x + 44 - 44)$$

$$= -5(x + 7)^2 + 245$$

Example 3: p. 187

Convert $y = 4x^2 - 28x - 23$ to vertex form and verify the two forms are equivalent.

$$y = 4(x^{2} - 7x) - 23$$
hmmmm...... divide 6y 2: $\frac{7}{2}$
then square: $\frac{49}{4}$

$$= 4(x^{2} - 7x + \frac{49}{4} - \frac{49}{4}) - 23$$

$$= 4(x - \frac{7}{2}x)^{2} - 49 - 23$$

$$y = 4(x - \frac{7}{2})^{2} - 72$$
expand it out: $y = 4(x^{2} - 7x + \frac{49}{4})^{2} - 72$

$$= 4x^{2} - 28x + 49 - 72$$

$$= 4x^{2} - 28x - 23$$

$$= 4(x^{2} - 28x - 23)$$