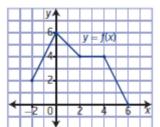
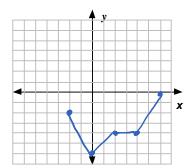
1.2 Reflections & Stretches

Starting with the graph of the function y = f(x), and determine 5 important points:



x	y
-2	2
0	6
2	4
ч	4
6	0

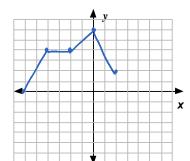
Draw the mirror image of f(x) over the x-axis, and determine the new 5 points:



x	у
-2	-2
0	-6
2	-4
4	-4
6	0

(x)-4)

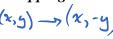
Draw the mirror image of f(x) over the y-axis, and determine the new 5 points:



x	y
2	2
0	6
-2	4
-4	4
-6	0

A reflection is a transformation where each point of the original graph has an <u>image point</u> resulting from a reflection in a line. This may result in a <u>Change in orientation</u> of the graph while preserving its _______.

Function	
y = -f(x)	

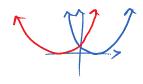


Vertical Reflection $(x,y) \rightarrow (x,-y)$ over x-axis

Example

(2, 9)

y = f(-x) Horizontal Reflection $(x, y) \rightarrow (-x, y)$ over y-oxis



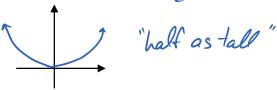
PreCalculus 12

An invariant point is a point on a graph that <u>remains</u> unchanged, and is a point on the original function that <u>intersects</u> the line of reflection.

We can also stretch functions vertically and horizontally by introducing a scale factor to one or both of the variables. Starting with a regular parabola, $y = x^2$

if we change the y to a 2y, we get $2y = x^2$, or more commonly, $y = \frac{1}{2}x^2$, and a new graph:

"balf as tall"

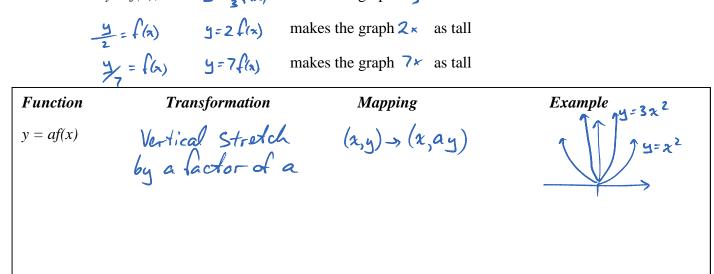


The result is _____ as tall as the original, so consider:

$$3y = f(x)$$
, or $y = \frac{1}{3}f(x)$ makes the graph $\frac{1}{3}$ as tall

$$\frac{y}{2} = f(x)$$
 $y = 2 f(x)$ makes the graph $2x$ as tall

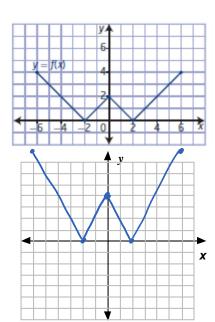
$$y = f(x)$$
 $y = 7f(x)$ makes the graph $7x$ as tal



In this case, the invariant points are where the height $\frac{29 \text{ vols } 7 \text{ ero}}{200 \text{ vols } 7 \text{ ero}}$, i.e. the $\frac{200 \text{ vols } 7 \text{ ero}}{200 \text{ vols } 7 \text{ ero}}$ of the function.

PreCalculus 12

Example 1: p. 21 – given the graph of y = f(x):



- a) sketch and transform the graph to g(x) = 2f(x)
- b) describe the transformation Vertical Stretch by 2
- c) give any invariant points

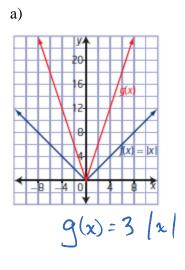
$$(\pm 2,0)$$

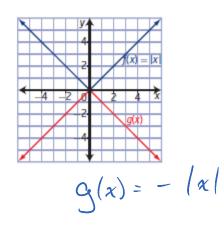
d) give the domain & range for both f(x) and g(x)

	f(n) Domours	Range
Function:	f(x)	g(x)
Set Notation	3x -6 <x 6}<="" <="" th=""><th>{4 0 6 4 6 8}</th></x>	{4 0 6 4 6 8}
Interval Notation	[-6,6]	[0,8]

b)

Example 2: p. 25 – Give the equations of the transformed function, g(x):





Assignment Part 1: p.28 # 2-5, 10

1.2 Function Reflections - Day 2

Now, instead of simply stretching functions vertically, we will stretch them horizontally by introducing a

scale factor to the x

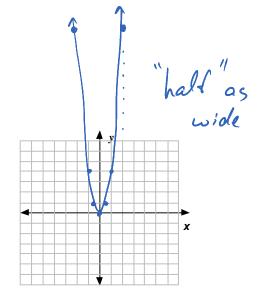
Start with our favorite function, $y = x^2$:

x	y
-2	7
-1	1
0	0
1	F
2	Ч

if we replace the x with 2x,

$$y = \left(2x\right)^2$$
or
$$y = 4x^2$$

x	y
-2	16
-1	4
0	0
1	7
2	16

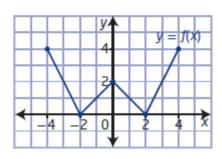


The graph has been $\frac{\text{horizontally compressed}}{\text{horizontally compressed}}$ and the mapping would be $(x,y) \rightarrow (//2x,y)$

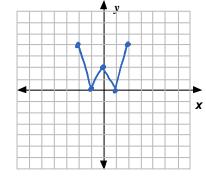
Function Transformation Mapping Example y = f(bx) horiz. stretch $y = f(\frac{x}{b})$ horiz.

In this case, the invariant points are where the width = 0, i.e. the y-intercepts of the function.

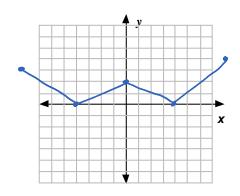
Example 3: p. 23 – given the graph of y = f(x):



a) graph g(x) = f(2x)



b) graph $g(x) = f\left(\frac{x}{2}\right)$



c) graph $g(x) = 2f\left(\frac{x}{3}\right)$ 2x as tall 3x as wide

