1.1 Translating Functions

Some graphs you may remember or recognize:

$$y = x^2$$

$$f(x) = |x|$$

$$y = \sqrt{x}$$

$$f(x) = x^3$$

What if we change $y = x^2$ into $y + 3 = x^2$, or more commonly,

parabola down 3 Check on gr. calc "

PreCalculus 12

What if we change $y = x^2$ into $y = (x+3)^2$?

- a translation of a function is a slide transformation that results in a shift of a graph without changing • vertical translations are transformations with equations of the form:

$$y-k=f(x)$$
 or $y=f(x)+k$

• horizontal translations are transformations with equations of the form

$$y-s=f(x)$$
 up s
 $y=f(x-s)$ rights

• a translated graph is <u>Congruent</u> to the original graph

An alternate way of demonstrating a translation is by using *mapping notation*. A translation of "5 to the right" would be written as $(x, y) \rightarrow (x+5, y)$, but in function notation, we would change y = f(x) to y = f(x).

Example 1: p. 8 – graph the functions $y = x^2$, $y - 2 = x^2$, and $y = (x - 5)^2$ on the same set of axes.

Express the latter two graphs in mapping notation:

$$(x,y) \rightarrow (x,y+2)$$

$$(x,y) \rightarrow (x+s,y)$$

$$(\chi, y) \rightarrow (\chi + s, y)$$

PreCalculus 12

Jup 3

Example 2: p. 9 – sketch a graph of y = |x - 4| + 3, and describe it in mapping notation:

 $(\chi, y) \rightarrow (\chi + 4, y + 3)$

Example 3: p. 10 - Determine the new equation of g(x) from the original f(x) in:

a)

mapping notation: $(x, y) \rightarrow (x-4, y-5)$

translated f(x) form: g(x) = f(x+4) - 5

explicit
$$g(x) = (x+y)^2 - 5$$

b)

mapping notation: $(x,y) \rightarrow (x-8,y+3)$

translated f(x) form: g(x) = f(x+8) + 3

explicit $g(x) = \frac{7}{3}$ don't know equation for g(x)

Assignment: p. 12 # 2-5(ab), 6-8, 11, 17, 19(calc), C3