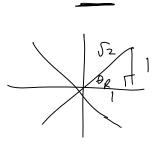

## Unit 4: Trigonometry & The Unit Circle

## 4.4 Introduction to Trigonometric Equations




ex. Solve to the nearest tenth: 
$$3 \sec \theta + 5 = 0$$
;  $0 \le \theta < 360^{\circ}$  |  $degrees$ .

Set  $\theta = -\frac{7}{3}$ 
 $degrees = \frac{3}{4}$ 
 $degrees = \frac$ 

$$\frac{180-731}{0-126.9^{\circ}, 273.1^{\circ}} = \frac{3}{\cos 126}$$

ex. Find the exact solutions:  $2sin^2\theta - 1 = 0$ ;  $0 \le \theta < 2\pi$ 



$$sin^{2}\theta = \frac{1}{2}$$

$$sin\theta = \pm \frac{1}{2}$$

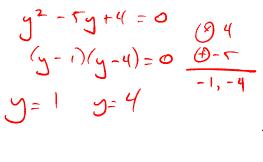
$$all quels$$

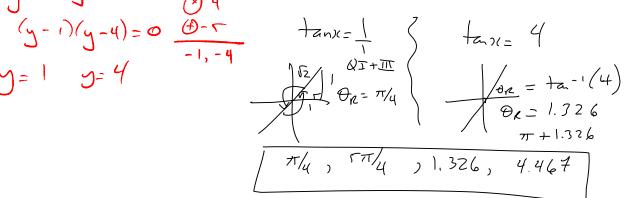
exact solutions: 
$$2\sin^2\theta - 1 = 0$$
;  $0 \le \theta < 2\pi$ 

$$\sin^2\theta = \frac{1}{2}$$

$$\sin^2\theta = \frac$$

ex. Solve, state exact solutions:  $\cos^2\theta - \cos\theta = 0$ ;  $0 \le \theta < 360^\circ$ 

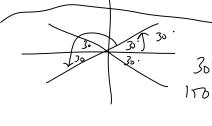

$$7 = 0$$
  $X = \begin{cases} 70 \\ (0,1) \end{cases}$   $Y = \begin{cases} 70 \\ (0,1) \end{cases}$   $Y = \begin{cases} 70 \\ (0,1) \end{cases}$ 


$$\chi(x-1) = 0$$

$$\chi(x$$

State the general solutions:

ex. Solve, state exact solutions where possible. Otherwise, approximate to the nearest thousandth:  $\tan^2 x - 5 \tan x + 4 = 0$ ;  $0 \le x < 2\pi$ 







ex. Solve, state exact general radian solutions:  $3 \csc^2 x - 2 = 5 \csc x$ 

$$\frac{2}{\sqrt{2}} = \frac{\pi}{\sqrt{2}}$$

$$\frac{2}{\sqrt{2}} = \frac{\pi$$





Practice: pg. 211/# 1 - 7, 9, 11 - 13, 18, 22