3.2 Parabolas in Standard Form

In Standard Form, parabolas look like $y = ax^2 + bx + c$ $a,b,c \in \Re, a \neq 0$

$$y = ax^2 + bx + c$$

e.g.
$$y = 2x^2 + 5x - 7$$

e.g.
$$y = 2x^2 + 5x - 7$$
 not $y = 3x + 2$ (line)

Link the Ideas – p. 165

$$y = ax^2 + bx + c$$

$$a,b,c\in\Re$$
, $a\neq 0$

a determines the Shape of the parabola & whether it opens

up (+) or down (-)

- · b influences the lkr position of the graph A
- c represents the y intercept

We can expand out the vertex form using algebra:

e.g.
$$y = -2(x-5)^2 + 1$$
 is the same as
$$= -2\left(x^2 - 10x + 25\right) + 1$$

$$= -2x^2 + 20x - 50 + 1$$

$$= -2x^2 + 20x - 49$$

On calculator: $q \operatorname{raph} Y_1 = -2 \times^2 + 20 \times -49$

From to an appropriate window showing vertex and x & y intercepts

PreCalculus 11

- calculate maximum: 2nd Trace 4 -> L, R, guess
- calculate y-intercept:

 Trace, Sub in O
- calculate x-intercept: 2^{nd} Trace $2 \longrightarrow L, R, gvess$

Example 1: graph the parabola $f(x) = 2x^2 - 3x - 5$ on a calculator to give:

- a) vertex (0.75, -6.125)
- b) axis of Symmetry $\chi = 0.75$
- c) direction of opening
- d) y-intercept -5
- e) x-intercepts -1, 2.5

Example 2: expand y = (2x + 5)(x - 1) out to standard form to give:

- a) direction of opening $2\alpha^2 + 3\alpha 5 \longrightarrow \frac{-b}{2a} =$
- b) coordinates of vertex $(-0.75, -6.125) \angle$ c) axis of symmetry
 - 2=-0.75

Assignment: p. 74 # 2-6(ab), 7, 12