

Logarithm Quiz #1 – No Calcs !

1. Express $8^{-2} = \frac{1}{64}$ in logarithmic form.

$$\log_8\left(\frac{1}{64}\right) = -2$$

2. Using the fact that $\log 3 = P$ and $\log 5 = Q$, find:

a) $\log 9 =$

$$\begin{aligned} \log 3^2 \\ 2\log 3 \\ \boxed{2P} \end{aligned}$$

b) $\log\left(\frac{25}{9}\right) =$

$$\begin{aligned} \log 25 - \log 9 \\ 2\log 5 - 2\log 3 \\ \boxed{2Q - 2P} \end{aligned}$$

c) $\log 5\sqrt{3} =$

$$\begin{aligned} \log 5 + \log \sqrt{3} \\ \boxed{Q + \frac{1}{2}P} \end{aligned}$$

d) $\log 300 =$

$$\begin{aligned} \log 10 + \log 30 \\ \log 5 + \log 2 + \log 3 + \log 10 \\ \boxed{Q + P + 1 + \log 2} \end{aligned}$$

3. If $\log_5(x) = -2$, what is the value of x ?

$$5^{-2} = x \quad 5^{-2} = \boxed{\frac{1}{25}}$$

$$x = \boxed{\frac{1}{25}}$$

4. Give the Domain for the function $y = \log_2(x-4) + 1$

$$x > 1 \quad 2^{y-1} = x-4 \Rightarrow x = 2^{y-1} + 4$$

5. Simplify completely and give restrictions on x :

$$\log_7(x^2 - 16) - \log_7(x^2 - 2x - 8)$$

$x > 4, x > -4$

$$\log_7 \frac{(x^2 - 16)}{(x^2 - 2x - 8)}$$

$$\log_7 \frac{(x+4)(x-4)}{(x-4)(x+2)}$$

$$\boxed{\begin{aligned} x > 4 \\ \text{or} \\ x < -4 \end{aligned}}$$

$$\log_7 \left[\frac{x+4}{x-2} \right]$$

Logarithm Quiz #3

1. When Mr. Abra gets his morning coffee at exactly 8:00, he calculates its temperature by the function:

$$T = 60(0.9)^{\frac{t}{5}} + 20$$

where T is temperature in $^{\circ}\text{C}$, and t is time in minutes.

a) What is the initial temperature at 8:00 AM?

$$t = 0$$

$$T = 80^{\circ}\text{C}$$

b) If he can drink it only after it has cooled to 43°C , how long must he wait? (to the nearest minute)

$$T = 43^{\circ}\text{C}$$

$$t = 45.5$$

c) Explain the meaning of the base of 0.9 in the function.

temp drops 10% every 5min

2. Solve for x :

$$\log_2(x-4) + \log_2(x+2) = 4$$

$x > 4$ $x > -2$

$$\log_2(x-4)(x+2) = 4$$

$$2^4 = (x-4)(x+2)$$

$$16 = x^2 - 2x - 8$$

$$0 = x^2 - 2x - 24$$

$$0 = (x-6)(x+4)$$

$$x = 6 \quad x = -4$$

$$\underline{\underline{x = 6}}$$

$$\text{b) } \log_x 8 = \frac{1}{2}$$

$$x^{\frac{1}{2}} = 8$$

$$\sqrt{x} = 8$$

$$x = 64$$

3. Santa brought in a motivational speaker, so the Elves have been making toys at an exponential rate.

On Dec 1st, they made 1000 toys, and each day they increase their production by 50%. How long until they make 10 million toys in a day? (to the nearest day)

4. *Bonus items I've brought to the Christmas Hamper Drive:*

Exponents & Logarithms Quiz#3

1. When Mr. Abra gets his morning coffee at exactly 8:00, he calculates its temperature by the function:

$$T = 60(0.9)^{\frac{t}{5}} + 20$$

where T is temperature in $^{\circ}\text{C}$, and t is time in minutes.

a) What is the initial temperature at 8:00 AM?

$$t=0 \Rightarrow T = 60(0.9)^0 + 20 \Rightarrow T = 80^{\circ}\text{C}$$

b) If he can drink it only after it has cooled to 43°C , how long must he wait?

$$\begin{aligned} 43 &= 60(0.9)^{\frac{t}{5}} + 20 \\ 23 &= 60(0.9)^{\frac{t}{5}} \\ \frac{23}{60} &= 0.9^{\frac{t}{5}} \end{aligned}$$

$$\begin{aligned} \log \frac{23}{60} &= \log 0.9 \\ \log \left(\frac{23}{60} \right) &= \frac{t}{5} \\ t &= \frac{5 \log \left(\frac{23}{60} \right)}{\log 0.9} \end{aligned}$$

$$\frac{45.5}{5} = \boxed{9}$$

$$\boxed{45.5 \text{ minutes}}$$

Wow that's a long time...

c) Explain the meaning of the base of 0.9 in the function.

the drink cools by 10% every 5 minutes

d) Explain the meaning of the + 20 in the function.

room temp is 20°C

2. Solve for x:

a) $\log_2(x-6) + \log_2(x-8) = 3$

$x > 6$ $x > 8$

$$\log_2(x-6)(x-8) = 3$$

$$2^3 = (x-6)(x-8)$$

$$8 = x^2 - 8x - 6x + 48$$

$$0 = x^2 - 14x + 40$$

$$0 = (x-10)(x-4)$$

$$\boxed{x=10} \text{ or } \boxed{x=4}$$

b) $\log_x 9 = \frac{1}{2}$

$$x^{\frac{1}{2}} = 9$$

$$\sqrt{x} = 9$$

$$\boxed{x=81}$$

3. Using the facts that $\log_2 3 = x$ and $\log_2 5 = y$, express the following as functions of x and/or y :

a) $\log_2 45 =$

$$\underbrace{\log_2 5 + \log_2 9}_y$$

$$y = \log_2 3^2$$

$$y = 2 \log_2 3$$

$$\boxed{y = 2x}$$

b) $\log_2 50 =$

$$\underbrace{\log_2 2 + \log_2 25}_1 + \log_2 5^2$$

$$1 + 2 \log_2 5$$

$$\boxed{1 + 2y}$$

c) $\log_2(0.8) =$

~~$$\frac{x}{2} - 0.8$$~~

$$\log_2 \left(\frac{8}{10} \right)$$

$$\log_2 8 - \log_2 10$$

$$3 - \log_2 5 + \underbrace{\log_2 2}_1$$

$$\boxed{4 - y}$$

d) $\log_2(2\sqrt{15}) =$

$$\underbrace{\log_2 2 + \log_2 \sqrt{15}}_1 + \frac{1}{2} \log_2 15$$

$$1 + \frac{1}{2} \log_2 15$$

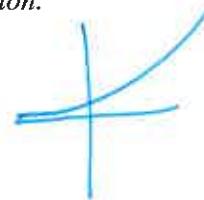
$$1 + \frac{1}{2}((\log 5)(\log 2))$$

$$1 +$$

$$1 + \frac{1}{2}(y + x)$$

$$\boxed{1 + \frac{1}{2}y + \frac{1}{2}x}$$

Exponents & Logs Quiz #1


Multiple Choice

Identify the choice that best completes the statement or answers the question.

C

1. Which set of properties does the function $y = 2^x$ have?

- A no x -intercept, no y -intercept
- B x -intercept is 1, no y -intercept
- C no x -intercept, y -intercept is 1
- D x -intercept is 0, y -intercept is 0

D

2. A colony of ants has an initial population of 750 and triples every day. Which function can be used to model the ant population, p , after t days?

I

- A $p(t) = 3(750)^t$
- B $p(t) = \frac{1}{3}(750)^t$
- C $p(t) = 750\left(\frac{1}{3}\right)^t$
- D $p(t) = 750(3)^t$

D

3. To the nearest year, how long would an investment need to be left in the bank at 5%, compounded annually, for the investment to triple?

- A 15 years
- B 26 years
- C 28 years
- D 23 years

$$P = I(1)$$

$$3I = I(r)$$

$$3I = I(0.05)^t$$

$$3 = 1.05^t$$

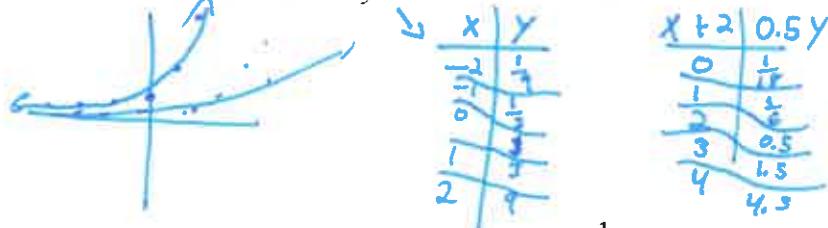
D

4. The equation $A = 90\left(\frac{1}{5}\right)^n$ can also be written as

$$90(5)^{-n}$$

- A $A = 90(5)^n$
- B $A = 45(5)^{-n}$
- C $A = 45(5)^n$
- D $A = 90(5)^{-n}$

A


5. Which of the following transformations maps the function $y = 8^x$ onto the function $y = 8^{x+5} + 7$?

- A a horizontal shift of 5 units to the left and a vertical shift of 7 units up
- B a horizontal shift of 5 units to the right and a vertical shift of 7 units down
- C a horizontal shift of 5 units to the right and a vertical shift of 7 units up
- D a horizontal shift of 5 units to the left and a vertical shift of 7 units down

Short Answer

1. For the function $y = \frac{1}{2}(3)^{x-2}$,

a) sketch and label the function and its base function $y = 3^x$ on the same set of axes

b) state the domain, the range, and the equation of the asymptote for $y = \frac{1}{2}(3)^{x-2}$

Domain: $x \in \mathbb{R}$

Range: $y > 0$

~~Asymptote~~

$y = 0$