1.4 Inverse of a Function

The *inverse* of a function is written as $y = f^{-1}(x)$, and can be found algebraically by switching the x y y variables, and then solving for $y \to if$ possible!

Example 1: p. 49

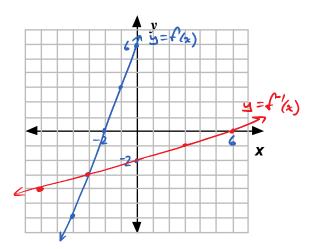
a) find $f^{1}(x)$ for f(x) = 3x + 6, and graph both on the same set of axes:

$$x = 3y + 6$$

$$x - 6 = 3y$$

$$y = \frac{x}{3} - 2$$

$$\therefore f^{-1}(x) = \frac{x}{3} - 2$$



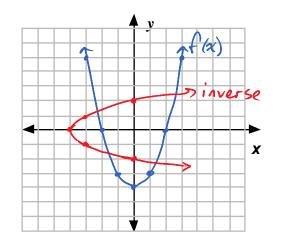
Notice that the x & y intercepts of the function become the <u>y & x intercepts of inverse</u>, and we have switched the <u>domain and range</u>.

1

b) $f(x) = x^2 - 4$ $\chi = y^2 \quad 4$ $\chi + 4 = y^2$ $y = \pm \sqrt{\chi + 4}$

must be ± if you have to introduce the root

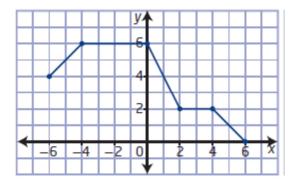
To graph, $Y_1 = J(x+4)$ $Y_2 = -J(x+4)$

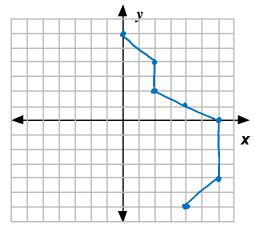


PreCalculus 12

Graphically, the inverse is a reflection over the line $\underline{y = x}$, which is a diagonal 45^0 line. Because of this, the inverse may not <u>necessarily be a function</u>, and sometimes the notation $\underline{x = f(y)}$ is used instead. Invariant points will occur where the graph intersects \underline{He} <u>line</u> $\underline{y = x}$, and the mapping notation for the inverse is $\underline{(x,y)} \rightarrow \underline{(y,x)}$.

Example 2: p. 46 – Graph the inverse of:





function

inverse

Domain: [-6,6]

[0,6]

Range: [0, 6]

[-6,6]

In this case, the original is a function as it passes the <u>Vertical Line Test</u>, but the inverse is <u>not a function</u>. If the original passes both the vertical & horizontal line tests, then it is called a <u>one-to-one function</u>, and we know that the inverse will also be a function.

On the graphing calculator:

 $Y_1 = function$

2nd PRGM gives DRAW menu

8:DrawInv

Y1 - this comes from VARS, then right, then enter twice

Make sure you finish with ENTER to give the command.

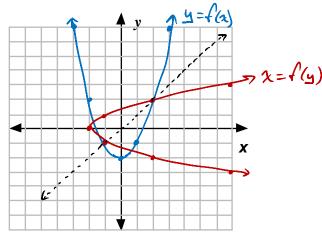
PreCalculus 12

Example 3: p. 48 Consider the function $f(x) = x^2 - 2$.

a) graph the function y = f(x). Is the inverse a function?

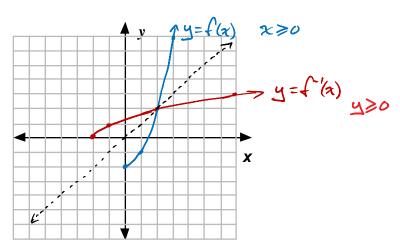
No, as f(x) fails the Horizontal Line Test

b) graph x = f(y) on the same axes.



c) graph the function & inverse again, but introduce a restriction so that both are functions.

just use half of the parabola - x>0



Assignment: p.51 # 1, 3-6, 9ace, 12ace, 15, C2