2.3 The Ambiguous Case

When considering triangles, we can classify them by what information is given:

455

ASA - 2 angles & the included side e.g.

SAS - 2 sides & the included angle e.g.

or SSA - 2 sides & an outside angle * AMBIGUOUS!

With the ambiguous case, there may be 2 possible solutions

Using a calculator to find a angle,

$$\sin \Theta = 0.5$$
 \rightarrow Θ

$$\sin \Theta = 0.707 \rightarrow \Theta = 45^{\circ}$$

$$\sin\Theta = 0.866 \rightarrow$$

What is the relationship? <u>two possible angles add to 180°</u>, so with the ambiguous case we consider <u>an acute possibility & an obtuse</u> one (http://www.mnwest.edu/fileadmin/static/website/dmatthews/Geogebra/AmbiguousCase01.html)

05

06 tuse 1

Example 1: Solve $\triangle ABC$:

$$A = 37^{\circ}$$

$$a = 8$$

$$\angle A = 37^{\circ}$$
 $a = 8$
 $\angle B = 65^{\circ}$ $b = 12$
 $\angle C = 78^{\circ}$ $c = 13$

SinB = SinA

$$\frac{\sin \beta}{12} = \frac{\sin 37^{\circ}}{8}$$

Now
$$\frac{5in 78}{6} = \frac{5in^37}{8}$$

Both work

PreCalculus 11

We should always check the answers to ensure the triangle is correct.

longest side is opposite <u>largest angle</u>
shortest side is opposite <u>smallest angle</u>

Example 2: Solve $\triangle ABC$:

$$A = 82^{\circ}$$

 $\frac{\sin A}{\sin A} = \frac{\sin C}{\sin C}$

$$a = 8.3$$

$$c = 7.4$$

$$\angle A = 82^{\circ}$$
 $a = 8.3$
 $\angle B = 36^{\circ}$ $b = 4.9$
 $\angle C = 62^{\circ}$ $C = 7.4$

$$\frac{\sin 82^{\circ}}{8.3} = \frac{\sin C}{7.4}$$

$$\frac{\sin 82^{\circ}}{8.3} = \frac{\sin 36^{\circ}}{6}$$

How do we know when we have 2, 1 (or no) solutions? Consider the possibilities for starting with angle A, side b and side a:

No Solution as a < h

One Solution when a = h (right Δ)

Two Solutions when h La < 6

PreCalculus 11

What if the starting angle *A* is obtuse? Once again, there are 3 cases:

No Solution a < b

No Solution a=b

One Solution a>b

Example 3: Determine whether there are 1, 2 or no solutions for the triangle:

$$A=145^{\rm o}$$

$$a = 18 \text{ m}$$

$$b = 10 \text{ m}$$

One Solution